서울대 연구팀, 신약 개발 표적 찾아내는 인공지능 알고리즘 개발

서울대 한범·정기훈 교수팀. 신약개발 타깃 '마커 유전자'를 효율적으로 발굴할 수 있는 알고리즘 '마르코폴로' 개발

서울대학교 의과대학 한 범 교수, 정기훈 교수 연구팀은 AI (인공지능)을 적용하여 질병의 발생과 치료에 중요한 유전자를 발굴하는 ‘마르코폴로’ 알고리즘을 개발해냈다고 11일 밝혔다.

해당 알고리즘은 항암 면역치료, 줄기세포 연구 등 주요 의생명 연구분야에서 최근 급부상 중인 단일세포 RNA 시퀀싱 분석법의 획기적 발전의 전기를 마련하여, 다양한 질환의 병인 기전을 밝히고 고부가가치를 창출하는 신약 개발 타겟 선정에 핵심적인 역할을 할 것으로 기대된다. 

질환의 발병 기전을 연구하고 이를 통해 성공적인 신약 개발을 하려면, 질병의 치료 타겟이 될 수 있는 세포 종류와 “마커 유전자”를 발굴해야 한다. 

최근에는 단일세포 RNA 시퀀싱 기술이 개발되어 널리 활용되고 있는데, 이와 같은 단일세포 전사체 분석은 세포 하나하나의 유전자 발현량을 개별적으로 측정할 수 있기 때문에, 희귀 세포 등 특정 세포군을 동정해내고, 그 특정 세포 종류에서만 발현되는 핵심 마커 유전자를 발굴 가능케 한다. 

하지만 기존 단일세포 전사체 분석의 가장 큰 문제는, 각각의 세포 종류를 클러스터링하며 정의하는 과정에 주관적인 요소가 크게 작용하여, 세포 종류의 정확한 구분에 종종 오류를 범하게 되는 문제가 있다. 

즉, 실험에서 도출된 세포의 정보가 기본적으로 분류되지 않은 상태로 연구자에게 주어지기 때문에, 연구자들은 세포를 주관적 기준에 따라 혹은 기존 학계의 잘못된 보고에 따라 분류해주는 기존의 방법론을 우선 적용하게 되는데, 이 방법론의 낮은 정확도로 인하여 세포군들을 모호하게 정의하고 분류를 명확하게 하지 못하게 된다. 이는, 실제 생명현상과는 동떨어지는 그릇된 결과 분석을 초래하며, 궁극적으로 효율적인 신약개발 타겟의 발굴은 불가능하게 된다. 

이러한 문제를 해결하기 위해 서울대 의대 한범/정기훈 교수 연구팀은, 세포 분류를 선행하지 않고 신약개발 타겟 마커 유전자를 효율적으로 발굴할 수 있는 AI (인공지능) 알고리즘 “마르코폴로”를 개발했다. 이 알고리즘은 단일세포 전사체 데이터를 통합적으로 분석하여 마커 유전자를 찾아내기 때문에, 기존의 선제적 및 인위적 세포 분류를 필요로 하지 않는다. 이렇게 함으로써 세포 분류를 할 때 발생할 수 있는 오류를 근본적으로 피할 수 있게 됐다.  

▲ 마르코폴로 알고리즘의 작동원리 도식도(이미지 출처=서울대학교)

알고리즘이 어떠한 편견(bias)도 없이 데이터를 전체적으로 조망하며 유전자를 찾아내기 때문에, 드넓은 미지의 바다를 항해하며 신세계 아시아의 새로움을 찾아내고 동방견문록을 편찬하게 된 “마르코 폴로”의 이름이 차용됐다. 

일례로 연구팀은 마르코폴로를 인간의 간 데이터에 적용하였고, 기존 방법론에서는 찾을 수 없었던 중요 마커 유전자(GNLY 유전자)를 찾아내었고, 또한 인간 줄기세포 데이터에 적용하여, 역시 기존 방법론에서는 동정할 수 없었던 마커 유전자(NODAL 유전자)를 발굴하는 데 성공했다.  

▲ 마르코폴로가 찾아낸 마커 유전자(NODAL과 GNLY)(이미지 출처=서울대학교)

한범 교수와 정기훈 교수는, “단일세포 RNA 시퀀싱 분석법 기반 중요 마커 유전자의 발굴은 암과 면역질환 등의 발병 메커니즘을 심도 있게 이해하고, 이를 기반으로 효율적 신약개발을 성공적으로 진행하는 데에 매우 중요한 역할을 할 것” 이라고 말했다. 

이번 연구는 한국연구재단의 중견연구자지원사업과 우수신진연구지원사업의 지원을 받아 진행되었으며, 인용지수 16.971의 『뉴클레익 애시드 리서치 (Nucleic Acids Research)』에 최근 게재되었다. 

글. 이지은 기자 smile20222@brainworld.com | 사진 및 자료출처 = 서울대학교 

ⓒ 브레인미디어 무단전재 및 재배포 금지